Skip to main content

MI

The ASME Boiler and Pressure Vessel Code continues to impact modern day boilers and other types of pressure vessels.
Society: ASME Main Category: Mechanical Sub Category: Safety Era: 1900-1909 DateCreated: 1915 Henry Ford Museum (Currently on loan to) Dearborn State: MI Zip: 48124 Country: USA Website: http://www.asme.org/about-asme/history/landmarks/topics-m-z/safety/-138-asme-boiler-and-pressure-vessel-code-%281915%29 Creator: Meier, Edward, Stevens, John

Published in 1914-15, the ASME Boiler and Pressure Vessel Code (BPVC) was the first comprehensive standard for the design, construction, inspection, and testing of boilers and pressure vessels. With adoption in the United States and use in many countries, it has contributed significantly to public safety and influenced the continued development of boiler and pressure vessel technology.

YearAdded:
1989
Image Credit: Courtesy of ASME Image Caption: The ASME Boiler and Pressure Vessel Code continues to impact modern day boilers and other types of pressure vessels. Era_date_from: 1915
Society: ASME Main Category: Mechanical Sub Category: Air and Space Transportation Era: 1940-1949 DateCreated: 1942 Air Zoo Kalamazoo State: MI Zip: 49002 Country: USA Website: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-238-grumman-wildcat--sto-wing-wing-folding-mecha, https://www.asme.org/getmedia/2d64abc8-3fa3-4d29-92d4-40db4777e8b2/238-Grumman-Wildcat-Sto-Wing-Wing-folding-Mechanism.aspx Creator: Grumman, Leroy

The Wildcat's innovative "Sto-Wing" mechanism developed on the XF4F-4 prototype by Leroy (Roy) Grumman (1895-1982), a founder of Grumman Aircraft Engineering Corporation, was crucial to the U. S. Navy's success during World War II.

The idea of a folding wing was not new: as early as 1920, F.M. Osborne patented a high-wing monoplane with folding wings, but never produced this design. A 1928 plane with folding wings designed by W. Leonard Bonney crashed on its first flight.

YearAdded:
2006
Image Credit: Public Domain (US Navy) Image Caption: Grumman Wildcat “Sto-Wing” Wing-folding Mecha Era_date_from: 1942
First practical US helicopter, pioneering the single-main-rotor concept
Society: ASME Main Category: Mechanical Sub Category: Air and Space Transportation Era: 1930-1939 DateCreated: 1939 Henry Ford Museum Dearborn State: MI Zip: 48214 Country: USA Website: http://www.asme.org/about-asme/history/landmarks/topics-a-l/air-and-space-transportation/-95-sikorsky-vs-300-helicopter-%281939%29, https://www.asme.org/getmedia/b997b811-c5c4-44e3-87d3-239bda559734/95-Sikorsky-VS-300-Helicopter.aspx Creator: Sikorsky, Igor I.

America's first practical helicopter, it pioneered the single main rotor concept that became the predominant helicopter configuration throughout the world. The principles that were developed and demonstrated by the VS-300 had direct application in the design of the early mass-production helicopter, marking the beginning of the world's rotorcraft industry.

The initial flight of the VS-300 was piloted by its designer, Igor I. Sikorsky (1889-1972), on September 14, 1939, in Stratford, Connecticut.

YearAdded:
1984
Image Credit: Courtesy ASME Image Caption: Sikorsky VS-300 Helicopter Era_date_from: 1939
Quincy Mining Company No. 2 Mine Hoist
Society: ASME Main Category: Mechanical Sub Category: Materials Handling & Extraction Era: 1920-1929 DateCreated: 1920 The Quincy Mine Hoist Association Hancock State: MI Zip: 49930 Country: USA Website: https://www.asme.org/about-asme/who-we-are/engineering-history/landmarks/96-quincy-mining-company-no-2-mine-hoist, https://www.asme.org/getmedia/a59133b1-6a0e-4305-9e3d-096da65f88b1/96-Quincy-Mining-Company-No2-Mine-Hoist.aspx Creator: Quincy Mine Company

The largest mine hoist in the world, it serves the two incline skipways of Shaft No. 2, almost 9,300 feet long. The overhead winding drum has a diameter of 30 feet, of which the cylindrical center section is 10 feet long. The two 10-foot long end sections taper down to a 15-foot diameter. Wire hoisting ropes (almost 27 tons) could be wound onto a small end of the cylindrical drum as the other rope unwound from the cylindrical section.

YearAdded:
1984
Image Credit: Public Domain Image Caption: Quincy Mine No 2 Hoist House. Two cooling ponds sat alongside the hoist house which served the cross-compound condensed Nordberg engine. After passing through the condenser, hot water went through sprays to be cooled before recycling. Era_date_from: 1920
Michigan-Lake Superior Power Hydroelectric Plant
Society: ASME Main Category: Electric, Mechanical Sub Category: Water Era: 1900-1909 DateCreated: 1902 Michigan-Lake Superior Power Hydroelectric Plant Saulte Sainte Marie State: MI Zip: Country: USA Website: http://www.asme.org/about-asme/history/landmarks/topics-a-l/electric-power-production-water/-61-michigan-lake-superior-power-hydroelectric-pla, https://www.asme.org/getmedia/9a6fbefb-8d74-4a9d-aaec-f5838421d7e4/61-Michigan-Lake-Superior-Plant.aspx Creator: Clergue, Francis, von Schon, Hans A.E.

This low-head operating plant is representative of nineteenth-century hydropower-plant practice using many small turbines in contrast to twentieth-century use of few large turbines and generators. Its 40,000 horsepower capacity made it the largest in the country using turbines of American design (McCormick-Francis). The contemporary and larger Niagara installation used turbines of French design (Fourneyron). The entrepreneur of this plant was Francis Clergue, a lawyer, who employed as his chief engineer Hans A.E. von Schon, a German immigrant who had served with the U.S.

YearAdded:
1981
Image Credit: Courtesy ASME Image Caption: Michigan-Lake Superior Power Hydroelectric Plant Era_date_from: 1902
Society: ASME Main Category: Electric, Mechanical Sub Category: Steam Era: 1890-1899 DateCreated: 1891 Henry Ford Museum Dearborn State: MI Zip: 48124 Country: USA Website: http://www.asme.org/about-asme/history/landmarks/topics-a-l/electric-power-production-steam/-49-marine-type-triple-expansion--engine-driven-dy, http://files.asme.org/ASMEORG/Communities/History/Landmarks/5537.pdf Creator: Vleck, John Van, Joy, David

This machine, which began operation on December 15, 1891, for the New York Edison Illuminating Company, represents the beginning of large-scale electric power generation in the United States. The generator was designed by chief engineer John Van Vleck, David Joy (known in England for his valve gear), and S. F. Prest.

YearAdded:
1980
Image Credit: Courtesy ASME Image Caption: Engine-Driven Dynamo Era_date_from: 1891
Herbert Dow in 1888 Photo courtesy of the Post Street Archives.
Society: ACS Main Category: Chemical Sub Category: Industrial Advances Era: 1900s DateCreated: 1891 Herbert H. Dow Historical Museum Midland State: MI Zip: 48640 Country: USA Website: https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/bromineproduction.html, https://www.acs.org/content/dam/acsorg/education/whatischemistry/landmarks/bromineproduction/first-electrolytic-production-of-bromine-historical-resource.pdf Creator: Herbert H. Dow

On January 4, 1891, Herbert H. Dow succeeded in producing bromine electrolytically from central Michigan’s rich brine resources. In the years that followed, this and other processes developed by Dow and the company he founded led to an increasing stream of chemicals from brines. The commercial success of these endeavors helped to promote the growth of the American chemical industry.

 

The plaque commemorating the event reads:

YearAdded:
1997
Image Credit: courtesy of the Post Street Archives. Image Caption: Herbert Dow in 1888 Era_date_from:
Subscribe to MI

We hope you enjoyed this essay.

Please support this 70-year tradition of trusted historical writing and the volunteers that sustain it with a donation to American Heritage.

Donate

Stay informed - subscribe to our newsletter.
The subscriber's email address.